如图,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PF⊥AE交BC于点F.
(1)连结PC,
①证明:△APB≌△CPB;
②求证:PA=PF;
(2)如图,过点F作FQ⊥BD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律.
(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由.

【考点】四边形综合题.
【答案】(1)①见解析;②见解析;(2)PQ的长不变.理由见解析;(3)AB+BF=PB.理由见解析.
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:87引用:1难度:0.2
相似题
-
1.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足
+|b-8|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.a-4
(1)求a,b的值,点B的坐标.
(2)当点P移动4.5秒时,请指出点P的位置,并求出点P的坐标;
(3)在O-C-B段的移动过程中,当△OPB的面积是12时,求点P移动的时间.发布:2025/6/8 9:30:1组卷:123引用:3难度:0.1 -
2.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.
(1)请在图1中再找出一对这样的角来:=.
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.
(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.2发布:2025/6/8 10:0:2组卷:584引用:6难度:0.3 -
3.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A'B'C',
(1)其旋转中心的坐标是 ;
(2)写出点C扫过的路径长 ;
(3)若在平面内有一点D,且四边形ABCD是平行四边形,则该四边形的周长为 ;
(4)在坐标轴上有点E,使S△ABC=S△AEC,直接写出E点坐标 (写出平面内所有符合条件的点坐标).发布:2025/6/8 10:0:2组卷:81引用:2难度:0.3