如图,抛物线y=-x2-2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=22DQ,求点F的坐标.
2
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:290引用:5难度:0.3
相似题
-
1.如图1,在平面直角坐标系中,抛物线y=ax2+bx+
(a≠0)与x轴交于点A(3,0),点B(-1,0),与y轴交于点C.3
(1)求该抛物线的解析式;
(2)点P为直线AC上方抛物线上的一点,过点P作PD∥y轴,交AC于点D,点E是直线AC上一点(点E位于DP左侧),且ED=PD,连接PE,求△DPE周长的最大值以及此时点P的坐标;
(3)如图2,将抛物线向左平移,使得平移后的抛物线的对称轴为y轴,点M在直线AC上,将直线AC绕点M顺时针旋转30°得到直线l,直线l与平移后抛物线的交点N位于直线AC上方,Q为平面直角坐标系内一点,直接写出所有使得以点C,M,N,Q为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.发布:2025/6/8 20:0:1组卷:486引用:2难度:0.2 -
2.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.发布:2025/6/8 14:30:2组卷:237引用:45难度:0.1 -
3.已知函数y=
,记该函数图象为G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)当m=2时,
①已知M(4,n)在该函数图象上,求n的值;
②当0≤x≤2时,求函数G的最大值.
(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值;12
(3)当m≤3时,设图象与x轴交于点A,与y轴交于点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=-3c,求m的值.发布:2025/6/8 14:30:2组卷:3081引用:7难度:0.1