【模型呈现:材料阅读】
如图1,点B,C,E在同一直线上,点A,D在直线CE的同侧,△ABC和△CDE均为等边三角形,AE,BD交于点F,对于上述问题,存在结论(不用证明):
(1)△BCD≌△ACE.
(2)△ACE可以看作是由△BCD绕点C旋转而成.
【模型改编:问题解决]
点A,D在直线CE的同侧,AB=AC,ED=EC,∠BAC=∠DEC=50°,直线AE,BD交于F,如图1:点B在直线CE上,
①求证:△BCD∽△ACE.
②求∠AFB的度数.
如图2:将△ABC绕点C顺时针旋转一定角度.
③补全图形,则∠AFB的度数为 114°114°.
④若将“∠BAC=∠DEC=50°”改为“∠BAC=∠DEC=m°”,则∠AFB的度数为 90°+m°290°+m°2.(直接写结论)
【模型拓广:问题延伸]
(3)如图3:在矩形ABCD和矩形DEFG中,AB=2,AD=ED=23,DG=6,连接AG,BF,求BFAG的值.

m
°
2
m
°
2
3
BF
AG
【考点】相似形综合题.
【答案】114°;90°+
m
°
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/30 0:0:8组卷:449引用:4难度:0.2
相似题
-
1.在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.
感知:如图①,连接AE,过点E作EF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);
探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点E作EF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;
应用:如图③,若EF交AB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为发布:2025/6/16 19:30:1组卷:681引用:3难度:0.1 -
2.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;
(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;
(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.发布:2025/6/15 22:0:1组卷:1072引用:9难度:0.2 -
3.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3