(1)阅读理解:
如图①,在△ABC中,若AB=8,AC=12,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,体现了转化和化归的数学思想,利用三角形三边的关系即可判断.
中线AD的取值范围是 2<AD<102<AD<10;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DM⊥DN于点D,DM交AB于点M,DN交AC于点N,连接MN,求证:BM+CN>MN;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=110°,以C为顶点作一个55°角,角的两边分别交AB,AD于M、N两点,连接MN,探索线段BM,DN,MN之间的数量关系,并加以证明.

【考点】四边形综合题.
【答案】2<AD<10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:254引用:6难度:0.2
相似题
-
1.如图,四边形ABCD中,AB=AD=4,CB=CD=3,∠ABC=∠ADC=90°,点M、N是边AB、AD上的动点,且∠MCN=
∠BCD,CM、CN与对角线BD分别交于点P、Q.12
(1)求sin∠MCN的值;
(2)当DN=DC时,求∠CNM的度数;
(3)试问:在点M、N的运动过程中,线段的比值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N相应的位置.PQMN发布:2025/6/10 13:0:2组卷:1113引用:6难度:0.1 -
2.在Rt△ABC和Rt△CDE中,AC=BC=a,CD=CE=b(b<a),∠ACB=∠DCE=90°,如图(1),以AC,CE为边作平行四边形ACEM,以CD,CB为边作平行四边形BCDN,点F,G分别是CM,BD的中点,当△DCE绕点C旋转时,
(1)证明:△MCA≌△DBC;
(2)①求△CFG的面积(用含a,b的代数式表示);
②直接写出FG的长度的最大值为(用含a,b的代数式表示).发布:2025/6/10 15:0:1组卷:107引用:2难度:0.1 -
3.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.
(1)如图1,当折痕的另一端F在边AB上,且时,则∠BGE=;AF=83
(2)如图2,当折痕的另一端F在边AD上,点E与D点重合时,判断△FHD和△DCG是否全等?请说明理由.
(3)若BG=10,当折痕的另一端F在边AD上,点E未落在边AD上,且点E到AD的距离为2时,直接写出AF的长.发布:2025/6/10 15:30:2组卷:546引用:6难度:0.3