小刚在用描点法画抛物线C1:y=ax2+bx+c时,列出了下面的表格:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 6 | 7 | 6 | 3 | … |
抛物线的顶点坐标为(2,7)
抛物线的顶点坐标为(2,7)
;(2)求抛物线C1的解析式;
(3)将抛物线C1先向下平移3个单位长度,再向左平移4个单位长度,得到新的抛物线C2;
①若直线y=
1
2
②抛物线C2的顶点为A,与x轴交点为点B,C(点B在点C左侧),点P(不与点A重合)在第二象限内,且为C2上任意一点,过点P作PD⊥x轴,垂足为D,直线AP交y轴于点Q,连接AB,DQ.求证:AB∥DQ.

【考点】二次函数综合题.
【答案】抛物线的顶点坐标为(2,7)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1113引用:2难度:0.4
相似题
-
1.已知抛物线y=-
x2+mx+t过(1,2m),抛物线与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,连接BC.12
(1)求t的值(用含m的式子表示);
(2)若抛物线过点(3,4),点G是x轴上的点,过点G作x轴的垂线,交抛物线于点E,交线段BC于点F,EF=FG时,求G点坐标;
(3)过A点作BC平行线,交抛物线于点D,当t与m满足t+m=时,求∠ADB的度数.72发布:2025/5/25 14:30:1组卷:30引用:1难度:0.3 -
2.综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是 ;
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.发布:2025/5/25 14:30:1组卷:2977引用:12难度:0.1 -
3.在平面直角坐标系中,直线y=-x-2与x轴相交于点A,与y轴相交于点B,二次函数y=ax2-2x-c的图象过A,B两点.
(1)求二次函数的表达式;
(2)点C是抛物线对称轴l上一点,点D在抛物线上,若以点C、D、A为顶点的三角形与△AOB全等,求满足条件的点D、点C的坐标.发布:2025/5/25 14:0:1组卷:109引用:1难度:0.2