为服务文明城市创建工作,丰城九中校团委暑期计划招募志愿者,对前来报名者先后进行笔试和面试两个环节测试.笔试共有备选题6道,规定每次测试都从备选题中随机挑选出4道题进行测试,答对3道或4道题者,直接录用为志愿者,否则进入面试环节;面试共有100分,面试分只有高于90分者录用为志愿者.已知高一、高二年级学生报名参加测试,在这6道笔试题中,高一年级学生能答对每道题的概率均为23,高二年级学生能答对其中的4道;在面试环节,高一、高二学生面试成绩高于90分的概率均为34.
(1)分别求高一年级学生、高二年级学生录用为志愿者的概率;
(2)现有3名高二年级学生参加志愿者选拔,记这3名学生录用为志愿者的人数为ξ,求ξ的分布列及数学期望.
2
3
3
4
【考点】离散型随机变量的均值(数学期望).
【答案】(1);;
(2)ξ的分布列为:
E(ξ)=.
97
108
9
10
(2)ξ的分布列为:
ξ | 0 | 1 | 2 | 3 |
P | 1 1000 |
27 1000 |
243 1000 |
729 1000 |
27
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:44引用:1难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:200引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7