如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,△PAD是正三角形,E为线段AD的中点,点F为棱PC上的动点.
(1)求证:平面PBC⊥平面PBE;
(2)若平面PAD⊥平面ABCD.
①当点F恰为PC中点时,求异面直线PD与BF所成角的余弦值;
②在平面PBE内确定一点H,使CH+FH的值最小,并求此时BHBP的值.
BH
BP
【考点】平面与平面垂直;异面直线及其所成的角.
【答案】(1)证明见解析;
(2)①;②答案见解析.
(2)①
10
20
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:205引用:5难度:0.5
相似题
-
1.如图△ABC内接于圆O,G,H分别是AE,BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.证明:
(1)GH∥平面ACD;
(2)平面ACD⊥平面ADE.发布:2025/1/20 8:0:1组卷:9引用:1难度:0.3 -
2.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,DC=
,四边形DCBE为平行四边形,DC⊥平面ABC.3
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面AE?证明你的结论.发布:2025/1/20 8:0:1组卷:25引用:1难度:0.5 -
3.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.
(1)求证:平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.发布:2025/1/20 8:0:1组卷:20引用:1难度:0.5