试卷征集
加入会员
操作视频

某医药开发公司实验室有n(n∈N*)瓶溶液,其中m(m∈N)瓶中有细菌R,现需要把含有细菌R的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验n次;
方案二:混合检验,将n瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌R,则n瓶溶液全部不含有细菌R;若检验结果含有细菌R,就要对这n瓶溶液再逐瓶检验,此时检验次数总共为n+1.
(1)假设n=5,m=2,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌R的概率;
(2)现对n瓶溶液进行检验,已知每瓶溶液含有细菌R的概率均为P(0≤P≤1).若采用方案一.需检验的总次数为ξ;若采用方案二.需检验的总次数为η•
(i)若ξ与η的期望相等.试求P关于n的函数解析式P=f(n);
(ii)若
P
=
1
-
e
-
1
4
,且采用方案二总次数的期望小于采用方案一总次数的期望.求n的最大值.参考数据:ln2≈0.69,ln3≈1.10,ln5≈1.61,ln7=1.95.

【答案】(1)
3
10

(2)(i)P=1-
1
n
1
n
,n∈N*
(ii)8.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:338引用:8难度:0.4
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正