已知抛物线y=ax2+ax-2(a>0)与y轴交于点C,与x轴交于点A,B(点A在点B的左侧).
(1)当a=1时,求A、B两点的坐标;
(2)当此抛物线经过点(-3,10)时,判断点(3,12)是否在此抛物线上,并说明理由;
(3)点D(1,m)、E(2,n)在此抛物线上,比较m、n的大小,并说明理由;
(4)我们把横纵坐标均为整数的点叫做“整点”.当线段AB(包括端点)上有且只有4个整点时,直接写出a的取值范围.
【答案】(1)A(-2,0),B(1,0);
(2)点(3,12)不在此抛物线上;
(3)n>m;
(4)<a≤1.
(2)点(3,12)不在此抛物线上;
(3)n>m;
(4)
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:55引用:1难度:0.5
相似题
-
1.如图,平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(2,5).
(1)求线段AB与y轴的交点坐标;
(2)若抛物线y=x2+mx+n经过A,B两点,求抛物线的解析式;
(3)若抛物线y=x2+mx+3与线段AB有两个公共点,求m的取值范围.发布:2024/12/23 12:0:2组卷:468引用:2难度:0.4 -
2.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
①ac<0;
②b2-4ac>0;
③2a-b=0;
④a-b+c=0.
其中,正确的结论有( )发布:2024/12/23 18:30:1组卷:1535引用:9难度:0.6 -
3.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如表:
x … -1 0 1 2 5… y=ax2+bx+c … m -1 -1 n t … 时,与其对应的函数值y>0,有下列结论:①abc>0;②当x>1时,y随x的增大而减小;③关于x的方程ax2+bx+c=t的两个根是12和1-5;④m+n>5.其中,正确的结论是 .103发布:2024/12/23 14:0:1组卷:345引用:4难度:0.6