在平面直角坐标系中,抛物线y=x2+bx+c(b、c是常数)经过点(-2,-1),点(1,2).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形POMN,PQ=2|m|,且PQ⊥x轴.
(1)求该抛物线对应的函数表达式;
(2)若点B是抛物线上一点,且在抛物线对称轴右侧.过点B作x轴的平行线交抛物线于另一点C,连接BC.当BC=6时,求点B的坐标;
(3)若m<0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大或y随x的增大而减小时,求m的取值范围;
(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为34时,直接写出m的值.
3
4
【考点】二次函数综合题.
【答案】(1)y=x2+2x-1;
(2)B(2,7);
(3)或m≤-3;
(4)或或.
(2)B(2,7);
(3)
-
1
2
≤
m
<
0
(4)
m
=
-
3
2
m
=
-
1
2
m
=
3
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:159引用:1难度:0.4
相似题
-
1.如图,抛物线
与坐标轴分别交于A,B,C三点,M是第二象限内抛物线上的一动点且横坐标为m.y=-34x2-94x+3
(1)求B点的坐标及直线AC的解析式为 ,.
(2)连接BM,交线段AC于点D,求的最大值;S△ADMS△ADB
(3)连接CM,是否存在点M,使得∠ACO+2∠ACM=90°,若存在,求m的值.若不存在,请说明理由.发布:2025/5/23 22:0:2组卷:523引用:5难度:0.1 -
2.如图,抛物线L:y=ax2+2x+c与一次函数y=-
x+1交于点A(2,0)及点B,点B的横坐标为8,抛物线L与x轴的另一个交点为C.12
(1)求抛物线L的函数表达式;
(2)抛物线L与L'关于坐标原点O对称,抛物线L'与y轴交于点D,过点D作x轴的平行线交抛物线L'于另一点E,则抛物线L'上是否存在一点P,使得S△DEP=?若存在,请求出点P的坐标,若不存在,请说明理由.83S△ABC发布:2025/5/23 21:30:2组卷:70引用:1难度:0.4 -
3.在平面直角坐标系xOy中,已知抛物线y=-x2+bx+c经过点A(-1,0)、B(2,0),将该抛物线位于x轴上方的部分沿x轴翻折,得到的新图象记为“图象U”,“图象U”与y轴交于点C.
(1)写出“图象U”对应的函数解析式及定义域;
(2)求∠ACB的正切值;
(3)点P在x轴正半轴上,过点P作y轴的平行线,交直线BC于点E,交“图象U”于点F,如果△CEF与△ABC相似,求点P的坐标.发布:2025/5/23 22:0:2组卷:416引用:1难度:0.3