如图,是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段PA是竖直高度为6米的平台,PO垂直于水平面,滑道分为两部分,其中AB段是双曲线y=10x的一部分,BCD段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,且B点的竖直高度为2米,滑道与水平面的交点D距PO的水平距离为7米,以点O为坐标原点建立平面直角坐标系,滑道上的点的竖直高度为y,距直线PO的水平距离为x.
(1)请求出滑道BCD段y与x之间的函数关系式;
(2)当滑行者滑到C点时,距地面的距离为32米,求滑行者此时距滑道起点A的水平距离;
(3)在建模实验中发现,为保证滑行者的安全,滑道BCD落地点D与最高点B连线与水平面夹角应不大于45°,且由于实际场地限制,OPOD≥12,请直接写出OD长度的取值范围.
10
x
3
2
OP
OD
1
2
【考点】二次函数综合题.
【答案】(1)滑道BCD段y与x之间函数关系式为y=-(x-5)2+2;
(2)滑行者距滑道起点的水平距离为;
(3)OD长度的取值范围为7≤OD≤12.
1
2
(2)滑行者距滑道起点的水平距离为
13
3
(3)OD长度的取值范围为7≤OD≤12.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:245引用:5难度:0.2
相似题
-
1.设二次函数y=x2+2ax+
(a<0)的图象顶点为A,与x轴交点为B、C,当△ABC为等边三角形时,a的值为.a22发布:2025/5/27 23:30:1组卷:369引用:3难度:0.7 -
2.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.发布:2025/5/28 0:30:1组卷:996引用:77难度:0.1 -
3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,
),且当x=-4和x=2时二次函数的函数值y相等.3
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.发布:2025/5/28 1:30:2组卷:1106引用:26难度:0.1