【初识模型】
(1)如图①,在△ABC中,D是BC上一点,∠B=∠ACE,ABAC=BDCE,连接DE.
求证:(Ⅰ)ABAC=ADAE;
(Ⅱ)∠B=∠ADE.
【再研模型】
(2)如图②,在△ABC中,D是BC上一点,∠B=∠ADE=∠ACE.求证:ABAC=BDCE.
【应用模型】
(3)如图③,直线AM与BN交于点O,∠AOB=60°,一辆快车和一辆慢车分别从A,B两处沿AM,BN方向同时匀速行驶,快车速度是慢车速度的2倍,在行驶过程中两车与某一定点P所组成的三角形的形状始终不变.当两车距离为700m时,慢车到定点P的距离为 10071007m.

AB
AC
=
BD
CE
AB
AC
=
AD
AE
AB
AC
=
BD
CE
7
7
【考点】相似形综合题.
【答案】100
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1133引用:3难度:0.4
相似题
-
1.在Rt△ABC中,∠BAC=90°,AB=AC,在Rt△ADE中,∠DAE=90°,2AD=AB,2AE=AC,连接DE,AN⊥BC,垂足为N,AM⊥DE,垂足为M.
(1)观察猜想
图①中,点D,E分别在AB,AC上时,的值为 ;BDCE的值为 .BDMN
(2)探究证明
如图②,将△ADE绕点A顺时针旋转,旋转角为α(0°<α<360°),连接BD,CE,判断问题(1)中的数量关系是否仍然存在,并证明;
(3)拓展延伸
在△ADE旋转的过程中,设直线CE与BD相交于点F,若∠CAE=90°,AB=6,请直接写出线段BF的长.发布:2025/5/23 17:0:1组卷:518引用:1难度:0.1 -
2.【实践操作】:
第一步:如图①,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的A'处,得到折痕DE,然后把纸片展平.
第二步:如图②,将图中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在B'处,得到折痕EF,B'C'交AB于点M,C'F交DE于点N,再把纸片展平.
【问题解决】:
(1)如图①,四边形AEA'D的形状是 ;
(2)如图②,线段MC'与ME是否相等?若相等,请给出证明;若不相等,请说明理由;
(3)如图②,若AC'=3cm,DC'=6cm,则MC'=,=.DNEN发布:2025/5/23 19:0:2组卷:311引用:3难度:0.1 -
3.问题提出
(1)如图①,在△ABC中,点D、E、F分别为边AB、AC、BC的中点,DE∥BC,BC=8,AF交DE于点G,则DG的长为 ;
问题探究
(2)如图②,在等腰直角△ABC中,∠C=90°,AC=4,点D为线段CB上一动点(点D不与点B、C重合),以AD为腰且在AD的右侧作等腰直角△ADF,∠ADF=90°,AB与FD交于点E,连接BF,求证:△ACD∽△ABF;
问题解决
(3)如图是郊外一空地,为了美化生态环境,现要将这块地打造成一个公园,在空地一侧挖一个四边形的人工湖CDQP,点P、Q分别在边AB、AD上,且满足PB=AQ,已知AB=AD,∠ACB=∠BAD=90°,AB=500m,BC=300m,为了满足湖周边的建设用地需要,人工湖的面积需尽可能小,设PB的长为x(m),四边形CDQP的面积为S(m2).
①求S与x之间的函数关系式;
②求人工湖面积的最小值及此时AQ的长.发布:2025/5/23 16:0:1组卷:259引用:1难度:0.3