为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元;超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.若设售价为x(x≥90)元,每周所获利润为Q(元),请解答下列问题:
(1)每周短袖T恤衫销量为y(件),则y=-10x+1500-10x+1500(含x的代数式表示),并写出Q与x的函数关系式;
(2)当售价x定为 115115元时,该服装超市所获利润最大,最大利润为 1225012250元;
(3)该服装超市每周想从这款T恤衫销售中获利8500元,又想尽量给客户实惠,该如何给这款T恤衫定价?
【答案】-10x+1500;115;12250
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 12:30:2组卷:153引用:3难度:0.5
相似题
-
1.某游乐场的圆形喷水池中心O有一喷水管OA,OA=0.5米,从A点向四周喷水,喷出的水柱为抛物线且形状相同.如图,以水平方向为x轴,点O为原点建立平面直角坐标系,点A在y轴上.已知在与池中心O点水平距离为3米时,水柱达到最高,此时高度为2米.
(1)求水柱所在的抛物线(第一象限部分)的函数表达式;
(2)身高为1.67m的小颖站在距离喷水管4m的地方,她会被水喷到吗?
(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m处达到最高,则喷水管OA要升高多少?发布:2025/5/23 20:0:1组卷:546引用:4难度:0.6 -
2.某座石拱桥的桥拱近似抛物线形,以拱顶O为原点,建立如图所示的平面直角坐标系,则其解析式为
,当水面宽度AB是10米时,水面到拱顶的高度OC是 米.y=-120x2发布:2025/5/23 19:0:2组卷:797引用:9难度:0.8 -
3.某商场销售一种小商品,进货价为40元/件.当售价为60元/件时,每天的销售量为300件.在销售过程中发现:销售单价每上涨2元,每天的销售量就减少20件.设销售价格上涨x元/件(x为偶数),每天的销售量为y件.
(1)当销售价格上涨10元时,每天对应的销售量为 件.
(2)请写出y与x的函数关系式.
(3)设每天的销售利润为w元,为了让利于顾客,则每件商品的销售单价定为多少元时,每天获得的利润最大,最大利润是多少?发布:2025/5/23 19:0:2组卷:546引用:4难度:0.6