数学家华罗庚曾说:“数缺形时少直观,形少数时难入微”事实上,很多代数问题可以转化为几何问题加以解决,例如,与(x-a)2+(y-b)2相关的代数问题,可以转化为点A(x,y)与点B(a,b)之间的距离的几何问题.结合上述观点,可得方程|x2+6x+13-x2-6x+13|=4的解为( )
(
x
-
a
)
2
+
(
y
-
b
)
2
|
x
2
+
6
x
+
13
-
x
2
-
6
x
+
13
|
=
4
【考点】圆与圆锥曲线的综合.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:252引用:2难度:0.5
相似题
-
1.已知双曲线C:
-x2a2=1(a>0,b>0)的左,右顶点分别是A1,A2,圆x2+y2=a2与C的渐近线在第一象限的交点为M,直线A1M交C的右支于点P,若△MPA2是等腰三角形,且∠PA2M的内角平分线与y轴平行,则C的离心率为( )y2b2发布:2024/12/17 19:30:2组卷:322引用:5难度:0.6 -
2.一个酒杯的截面是抛物线的一部分,其方程x2=2y(0≤y≤20),杯内放入一个球,要使球触及杯底部,则球的半径的取值范围为( )
发布:2025/1/5 23:30:4组卷:60引用:1难度:0.5 -
3.已知点M(1,2),点P在抛物线y2=8x上运动,点Q在圆(x-2)2+y2=1上运动,则|PM|+|PQ|的最小值为( )
发布:2024/12/28 23:0:1组卷:212引用:2难度:0.8