观察下列等式:
①11×3=12×(1-13);②13×5=12×(13-15);③15×7=12×(15-17)…
根据上述等式的规律,解答下列问题:
(1)请写出第④个等式:17×9=12×(17-19)17×9=12×(17-19);
(2)写出你猜想的第n个等式(用含有n的等式表示),并证明这个等式.
(3)应用你发现的规律,计算:
21×3+23×5+25×7+27×9…+22019×2021.
1
1
×
3
1
2
1
3
1
3
×
5
1
2
1
3
1
5
1
5
×
7
1
2
1
5
1
7
1
7
×
9
=
1
2
×
(
1
7
-
1
9
)
1
7
×
9
=
1
2
×
(
1
7
-
1
9
)
2
1
×
3
2
3
×
5
2
5
×
7
2
7
×
9
2
2019
×
2021
【答案】
1
7
×
9
=
1
2
×
(
1
7
-
1
9
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:385引用:4难度:0.4
相似题
-
1.下列排列的每一列数,研究它的排列有什么规律?并填出空格上的数.
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.发布:2025/6/25 7:30:2组卷:49引用:2难度:0.3 -
2.(1)计算:1-2+3-4+5-6…+99-100;
(2)计算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.发布:2025/6/25 7:30:2组卷:46引用:1难度:0.6 -
3.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.发布:2025/6/25 7:30:2组卷:106引用:2难度:0.3