公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机,2是无理数的证明如下:
假设2是有理数,那么它可以表示成qp(p与q是互质的两个正整数).于是(qp)2=(2)2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“2是有理数”的假设不成立,所以,2是无理数.
这种证明“2是无理数”的方法是( )
2
2
2
q
p
q
p
2
2
2
2
【考点】反证法.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1070引用:14难度:0.7