综合与实践
数学活动:数学活动课上,老师提出如下数学问题:
已知四边形ABCD与四边形BEFG都为正方形,P为DF的中点,连接AP,EP,如图1,当点E在AB上时,求证:AP=PE.
独立思考:(1)请你证明老师提出的问题;
合作交流:(2)解决完上述问题后,“翱翔”小组的同学受此启发,把正方形BEFG绕点B顺时针旋转,当点F落在对角线BD上时(如图2),他们认为老师提出的结论仍然成立.请你予以证明;
问题解决:(3)解决完上述问题后,“善思”小组提出如下问题,把正方形BEFG绕点B顺时针旋转(如图3),当点D,E,F在同一条直线上时,DE与BC交于点H.若AD=5,BG=1,请直接写出HC的值.
AD
=
5
【考点】四边形综合题.
【答案】(1)见解析;(2)见解析;(3).
5
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:110引用:1难度:0.2
相似题
-
1.阅读材料题:
浙教版九上作业本①第18页有这样一个题目:已知,如图一,P是正方形ABDC内一点,连接PA、PB、PC,若PC=2,PA=4,∠APC=135°,求PB的长.
小明看到题目后,思考了许久,仍没有思路,就去问数学老师,老师给出的提示是:将△PAC绕点A顺时针旋转90°得到△P'AB,再利用勾股定理即可求解本题.请根据数学老师的提示帮小明求出图一中线段PB的长为.
【方法迁移】:已知:如图二,△ABC为正三角形,P为△ABC内部一点,若PC=1,PA=2,PB=,求∠APB的大小.3
【能力拓展】:已知:如图三,等腰三角形ABC中∠ACB=120°,D、E是底边AB上两点且∠DCE=60°,若AD=2,BE=3,求DE的长.发布:2025/6/13 9:0:1组卷:508引用:3难度:0.1 -
2.如图,一个三角形的纸片ABC,其中∠A=∠C,
(1)把△ABC纸片按(如图1)所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;
(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;
(3)当点A落在四边形BCED外时(如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)发布:2025/6/13 6:30:2组卷:37引用:2难度:0.1 -
3.已知四边形ABCD是正方形,点F为射线AD上一点,连接CF并以CF为对角线作正方形CEFG,连接BE,DG.
(1)如图1,当点F在线段AD上时,求证:BE=DG;
(2)如图1,当点F在线段AD上时,求证:CD-DF=BE;2
(3)如图2,当点F在线段AD的延长线上时,请直接写出线段CD,DF与BE间满足的关系式.发布:2025/6/13 7:0:2组卷:429引用:3难度:0.2