某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测,防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:y=ax2+bx+c,(0≤x≤8) 640,(8<x≤10)
,数据如表.
a x 2 + bx + c , ( 0 ≤ x ≤ 8 ) |
640 , ( 8 < x ≤ 10 ) |
时间x(分钟) | 0 | 1 | 2 | 3 | … | 8 | x>8 |
累计人数y(人) | 0 | 150 | 280 | 390 | … | 640 | 640 |
(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数=累计人数-已检测人数);
(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
【考点】二次函数的应用.
【答案】(1)a=-10,b=160,c=0;
(2)故排队人数最多时有490人;
(3)从一开始就应该至少增加3个检测点.
(2)故排队人数最多时有490人;
(3)从一开始就应该至少增加3个检测点.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:303引用:6难度:0.3
相似题
-
1.2022年2月8日北京冬奥会中自由滑雪空中技巧项目备受大家关注,中国优秀运动员沿跳台斜坡AB加速加速至B处腾空而起,沿抛物线BEF运动,在空中完成翻滚动作,着陆在跳台的背面着陆坡DC.建立如图所示的平面直角坐标系,BD∥x轴,C在x轴上,B在y轴上,已知跳台的背面DC近似是抛物线y=a(x-7)2(1≤x≤7)的一部分,D点的坐标为(1,6),抛物线BEF的表达式为y=b(x-2)2+k.
(1)当k=10时,求a、b的值;
(2)在(1)的条件下,运动员在离x轴3.75m处完成动作并调整好身姿,求此时他距DC的竖直距离(竖直距离指的是运动员所在位置的点向x轴的垂线与DC的交点之间线段的长);
(3)若运动员着落点与B之间的水平距离需要在不大于7m的位置(即着落点的横坐标x满足x≤7且b<0,),求b的取值范围.发布:2024/12/23 13:30:1组卷:356引用:4难度:0.4 -
2.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x-h)2+k(a<0).
(1)拱门上的点的水平距离x与竖直高度y的几组数据如下:水平距离x/m 2 3 6 8 10 12 竖直高度y/m 4 5.4 7.2 6.4 4 0
(2)一段时间后,公园重新维修拱门.新拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=-0.288(x-5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d1,“新拱门”的跨度为d2,则d1d2(填“>”“=”或“<”).发布:2024/12/23 11:30:2组卷:581引用:6难度:0.5 -
3.如图,已知梯形ABCD中,DC∥AB,∠A=90°,∠B=60°,AD=3,AB=
,DC=53,P是BC边上一点(P与B不重合),过点P作PQ⊥BC交AB于Q,设PB=x,四边形AQPD的面积为y.43
(1)求y与x的函数关系式;
(2)当x为何值时,y有最大值或最小值?其值等于多少?发布:2025/1/21 8:0:1组卷:31引用:1难度:0.5