【学习心得】
(1)小雯同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB长为半径作辅助圆⊙A,则C,D两点必在⊙A上,∠BAC是⊙A的圆心角,∠BDC是⊙A的圆周角,则∠BDC=4545°.

【初步运用】
(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=24°,求∠BAC的度数;
【方法迁移】
(3)如图3,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°(不写作法,保留作图痕迹);
【问题拓展】
(4)①如图4①,已知矩形ABCD,AB=2,BC=m,M为边CD上的点.若满足∠AMB=45°的点M恰好有两个,则m的取值范围为 2≤m<2+12≤m<2+1.
②如图4②,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2,求AD的长.

2
2
【考点】圆的综合题.
【答案】45;2≤m<+1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1762引用:8难度:0.3
相似题
-
1.已知,在Rt△ABC中,∠A=90°,AB=3,AC=4,⊙A与⊙B外切于点D,并分别与BC、AC边交于点E、F.
(1)设EC=x,FC=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)若以E、F、C为顶点的三角形与△ABC相似,求的值;ADBD
(3)若⊙C与⊙A、⊙B都相切,求的值.ADBD发布:2025/6/17 21:0:1组卷:22引用:1难度:0.3 -
2.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的⊙O交边CD于点E,连接OE,过点E作⊙O的切线交边BC于点F.
(1)求证:△ODE∽△ECF;
(2)设DE=x,求OA的长(用含x的代数式表示);
(3)在点O运动的过程中,设△CEF的周长为p,试用含x的代数式表示p,你能发现怎样的结论?发布:2025/6/17 21:30:1组卷:37引用:1难度:0.4 -
3.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE.
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC;
②求OH+HC的最大值.发布:2025/6/18 6:30:1组卷:2832引用:7难度:0.1