(1)证明:|x-1|+|x-2|≥1对所有实数x恒成立,并求等号成立的条件;
(2)若不等式|x-1|-|x-2a|>1的解集非空,求a的取值范围;
(3)设关于x的不等式ax2+2|x-a|-20<0的解集为A,试探究是否存在a∈N,使得不等式x2+x-2<0与|2x-1|<x+2的解都属于A,若不存在,说明理由,若存在,请求出满足条件的a的所有值.
【答案】(1)证明见解析,当x∈[1,2]时取等号;
(2)(-∞,0)∪(1,+∞);
(3)存在,a=0或a=1或a=2.
(2)(-∞,0)∪(1,+∞);
(3)存在,a=0或a=1或a=2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:28引用:2难度:0.5
相似题
-
1.已知关于x的不等式|x+1|-|x-2|≥|t-1|+t有解.
(1)求实数t的取值范围;
(2)若a,b,c均为正数,m为t的最大值,且2a+b+c=m.求证:.a2+b2+c2≥23发布:2024/12/29 8:0:12组卷:65引用:9难度:0.5 -
2.已知函数f(x)满足2axf(x)=2f(x)-1,f(1)=1,设无穷数列{an}满足an+1=f(an).
(1)求函数f(x)的表达式;
(2)若a1=3,从第几项起,数列{an}中的项满足an<an+1;
(3)若1+<a1<1m(m为常数且m∈N,m≠1),求最小自然数N,使得当n≥N时,总有0<an<1成立.mm-1发布:2025/1/14 8:0:1组卷:62引用:2难度:0.5 -
3.我们知道,
,当且仅当a=b时等号成立.即a,b的算术平均数的平方不大于a,b平方的算术平均数.此结论可以推广到三元,即(a+b2)2≤a2+b22,当且仅当a=b=c时等号成立.(a+b+c3)2≤a2+b2+c23
(1)证明:,当且仅当a=b=c时等号成立.(a+b+c3)2≤a2+b2+c23
(2)已知x>0,y>0,z>0,若不等式恒成立,利用(1)中的不等式,求实数t的最小值.x+y+z≤tx+y+z发布:2024/10/12 1:0:1组卷:18引用:2难度:0.4