市一中某数学兴趣小组利用正方形硬纸片开展了一次活动,请认真阅读下面的探究片段,完成提出的问题.四边形ABCD是边长为3的正方形,点E是射线BC上的动点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.【探究1】当点E是BC中点时,如图1,发现AE=EF,这需要证明AE与EF所在的两个三角形全等,但△ABE与△FCE显然不全等,考虑到点E是BC的中点,取AB的中点H,连接EH,证明△AHE与△ECF全等即可.(无需证明)

【探究2】(1)如图2,如果把“点E是BC的中点”改成“点E是边BC上(不与点B、C重合)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立吗?如果成立,写出证明过程,如果不成立,也请说明理由.
(2)如图3,如果点E是边BC延长线上的任意一点,其他条件不变,请你画出图象,并判断“AE=EF”是否成立?是是(填“是”或“否”),如果是,请简述一下辅助线的作法;如果否,也请说明理由.

【探究3】连接AF交直线CD于点I,连接EI,试探究线段BE,EI,ID之间的数量关系,请在备用图中作出图形并直接写出结论.
【探究4】当CE=2时,此时△EIF的面积为 1或51或5.
【考点】四边形综合题.
【答案】是;1或5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 17:30:1组卷:438引用:2难度:0.1
相似题
-
1.如图,四边形ABCD中,AD∥BC,CD=10,AB=2
,动点P沿着A-D运动,同时点Q从点D沿着D-C-B运动,它们同时到达终点,设Q点运动的路程为x,DP的长度为y,且y=-17x+18.34
(1)求AD,BC的长.
(2)设△PQD的面积为S,在P,Q的运动过程中,S是否存在最大值,若存在,求出S的最大值;若不存在,请说明理由.
(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.发布:2025/6/16 4:0:2组卷:414引用:2难度:0.4 -
2.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=203453
其中正确的结论是(填写所有正确结论的序号).发布:2025/6/16 11:0:1组卷:3337引用:5难度:0.2 -
3.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE=°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;
(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;
(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)发布:2025/6/16 14:30:2组卷:1152引用:2难度:0.1