已知定义在R上的函数y=f(x).
(1)求证:f(x)=f(2a-x)是y=f(x)图象关于直线x=a对称的充要条件;
(2)若函数y=f(x)满足f(x)=f(2-x),且在[1,+∞)单调递增,求解不等式f(x)<f(2x+1).
【答案】(1)证明过程见解析;
(2){x|x<-1或x}.
(2){x|x<-1或x
>
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:51引用:1难度:0.4
相似题
-
1.已知函数f(x),g(x)在R上的导函数分别为f'(x),g'(x),若f(x+2)为偶函数,y=g(x+1)-2是奇函数,且f(3-x)+g(x-1)=2,则下列结论正确的是( )
发布:2024/12/28 23:30:2组卷:124引用:7难度:0.6 -
2.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
发布:2024/12/20 0:0:3组卷:82引用:7难度:0.8 -
3.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=( )
发布:2024/12/29 7:0:1组卷:84引用:2难度:0.5