某数学“综合与实践”小组在研究等腰三角形时发现:如图,△AOB和△DOC为两个顶角相等的等腰三角形,其中AB=BO,CO=CD,∠ABO=∠DCO,连接AD,BC,M,N,P分别为OA,OD,BC的中点.

(1)如图1,若A,O,C三点在同一直线上,且∠ABO=60°.
①猜想:BC和AD的数量关系是 AD=BC.AD=BC.;
②试判断△PMN的形状,并说明理由;
(2)如图2,若A,O,C三点在同一直线上,且∠ABO≠∠AOB,求证:△PMN∼△BAO;
(3)如图3,固定△AOB,将△COD绕着点O旋转,若AB=OB=2,CD=OC=3,请求出PM的最大值.
【考点】几何变换综合题.
【答案】AD=BC.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:119引用:1难度:0.1
相似题
-
1.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.发布:2025/6/16 20:30:1组卷:7189引用:10难度:0.1 -
2.阅读下面材料,完成(1)~(3)题.
数学课上,老师出示了这样一道题:
如图1,△ABC中,AC=BC=a,∠ACB=90°,点D在AB上,且AD=kAB(其中0<k<),直线CD绕点D顺时针旋转90°与直线CB绕点B逆时针旋转90°后相交于点E,探究线段DC、DE的数量关系,并证明.12
同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现DC与DE相等”;
小伟:“通过构造全等三角形,经过进一步推理,可以得到DC与DE相等”
小强:“通过进一步的推理计算,可以得到BE与BC的数量关系”
老师:“保留原题条件,连接CE交AB于点O.如果给出BO与DO的数量关系,那么可以求出CO•EO的值”
(1)在图1中将图补充完整,并证明DC=DE;
(2)直接写出线段BE与BC的数量关系(用含k的代数式表示);
(3)在图2中将图补充完整,若BO=DO,求CO•EO的值(用含a的代数式表示).513发布:2025/6/16 18:30:2组卷:538引用:2难度:0.2 -
3.如图①,在△ABC中,AB=AC=4,∠BAC=120°,D是BC的中点.
小明对图①进行了如下探究:在直线AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转60°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在直线AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
①∠BEP=;
②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在直线AD上运动时,求AE的最小值.发布:2025/6/17 6:0:2组卷:133引用:2难度:0.3