富含重金属镉(Cd)的污水进入沿岸水域,成为当前海洋污染的重要污染物之一。为研究镉污染对水生植物生长的影响,某科研小组以石莼(一种绿色海藻)为材料,用不同浓度CdCl2溶液处理三天后,测得石莼叶肉细胞总光合速率(μmolO2•mg FW-1•h-1)、叶绿素含量(μg•mg FW-1)和呼吸速率(μmolO2•mg FW-1•h-1)的数据如图,请据图分析回答下列问题。

(1)为保证实验结果科学有效,在用不同浓度CdCl2溶液处理石莼的过程中,除了每组实验所用的培养器材、石莼数量和生长发育状况要相同外,还需要控制温度(水温)、光照强度温度(水温)、光照强度等主要的无关变量相同且适宜(写出两个)。
(2)在实验设置的浓度范围内,当Cd2+浓度高于10×10-6mol/L时,石莼净光合速率的变化趋势是逐渐增大逐渐增大,判断依据是净光合速率等于总光合速率减去呼吸速率的差值,当Cd2+浓度高于10×10-6mol/L时,随Cd2+浓度增加,石莼的总光合速率略有下降(变化不大),但呼吸速率逐渐明显下降(总光合速率和呼吸速率均逐渐减弱,但对呼吸速率的影响更大)净光合速率等于总光合速率减去呼吸速率的差值,当Cd2+浓度高于10×10-6mol/L时,随Cd2+浓度增加,石莼的总光合速率略有下降(变化不大),但呼吸速率逐渐明显下降(总光合速率和呼吸速率均逐渐减弱,但对呼吸速率的影响更大)。
(3)研究发现金属镉并不会影响光合作用相关酶的活性,试推断随Cd2+浓度增加,石莼总光合速率变化的主要原因是Cd2+浓度的增加会使叶绿素含量降低(或抑制叶绿素的合成、促进叶绿素分解)Cd2+浓度的增加会使叶绿素含量降低(或抑制叶绿素的合成、促进叶绿素分解),由此可知,金属镉的富集可能会直接影响光合作用的光反应光反应阶段。
(4)研究发现,植物在受到轻度有害物质的刺激时,会通过加快细胞呼吸来补偿生理上受到的损害,以适应有害物质的刺激,称为伤呼吸。据表分析,能刺激石莼发生伤呼吸的Cd2+浓度范围是小于15×10-6mol/L小于15×10-6mol/L,而超过这一范围伤呼吸就不能发生,这说明了植物的适应性能力具有一定限度(相对性)一定限度(相对性)。
【答案】温度(水温)、光照强度;逐渐增大;净光合速率等于总光合速率减去呼吸速率的差值,当Cd2+浓度高于10×10-6mol/L时,随Cd2+浓度增加,石莼的总光合速率略有下降(变化不大),但呼吸速率逐渐明显下降(总光合速率和呼吸速率均逐渐减弱,但对呼吸速率的影响更大);Cd2+浓度的增加会使叶绿素含量降低(或抑制叶绿素的合成、促进叶绿素分解);光反应;小于15×10-6mol/L;一定限度(相对性)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:28引用:4难度:0.6
相似题
-
1.20世纪60年代,科学家发现有些起源于热带的植物如甘蔗、玉米等,除了和其他C3植物一样具有卡尔文循环(固定CO2的初产物是三碳化合物(C3),简称C3途径)外,还存在另一条固定CO2的途径,固定CO2的初产物是四碳化合物(C4),简称C4途径,这种植物称为C4植物,其光合作用过程如图1所示。研究发现C4植物中PEP羧化酶对CO2的亲和力约是Rubisco酶的60倍。请回答下列问题:
(1)在C植物光合作用中,CO2中的碳转化成有机物(CH2O)中碳的转移途径是
(2)甲、乙两种植物光合速率与CO2浓度的关系如图2。请据图分析,植物
(3)Rubisco酶是一种双功能酶,当CO2/O2比值高时,可催化C5固定CO2合成有机物;当CO2/O2比值低时,可催化C5结合O2发生氧化分解,消耗有机物,此过程称为光呼吸,结合题意分析,在炎热干旱环境中,C4植物的生长一般明显优于C3植物的原因是
(4)水稻是世界上最重要的粮食作物。目前,科学家正在研究如何利用转基因技术将“C4途径”转移到水稻中去,这项研究的意义是发布:2025/1/16 8:0:1组卷:46引用:1难度:0.6 -
2.在强光环境下,将某突变型植株与野生型植株均分别施低氮肥和高氮肥,一段时间后测定其叶绿素和Rubisco酶(该酶催化CO2和C5反应)的含量,结果如图所示。下列叙述不正确的是( )
发布:2025/1/16 8:0:1组卷:19引用:2难度:0.7 -
3.干旱胁迫是因为土壤水分亏缺,植物吸收水分少于叶片蒸腾作用损耗的水分,从而无法维持植物正常水分状况而对植物的生长发育造成影响。如图是其他条件适宜且不变时干旱胁迫(即处理组)对吊兰光合作用相关指标影响的结果。
回答下列问题
(1)干旱胁迫会影响吊兰光合作用过程中[H]和ATP的产生,与[H]和ATP元素组成相同的化合物有
(2)由图可知:12d-24d期间CO2浓度
(3)另有研究表明,12d后吊兰光合作用强度下降主要是因为叶绿素破坏导致,推测吸收发布:2025/1/19 8:0:1组卷:6引用:1难度:0.6