古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.观察下面的点阵图和相应的等式,探究其中的规律:
(1)下图反映了任何一个三角形数是如何得到的,认真观察,并在④后面的横线上写出相应的等式;

①1=1
②1+2=(1+2)×22=3
③1+2+3=(1+3)×32=6
④1+2+3+4=(1+4)×421+2+3+4=(1+4)×42;
(2)通过猜想,写出(1)中与第九个点阵相对应的等式1+2+3+…+9=(1+9)×921+2+3+…+9=(1+9)×92;
(3)从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.结合(1)观察下列点阵图,并在⑤看面的黄线上写出相应的等式.

①1=12
②1+3=22
③3+6=32
④6+10=42
⑤10+15=5210+15=52;
(4)通过猜想,写出(3)中与第n个点阵相对应的等式(1+n-1)(n-1)2+(1+n)×n2=n2(1+n-1)(n-1)2+(1+n)×n2=n2;
(5)判断225是不是正方形数,如果不是,说明理由;如果是,225可以看作哪两个相邻的“三角形数”之和?
(
1
+
2
)
×
2
2
(
1
+
3
)
×
3
2
(
1
+
4
)
×
4
2
(
1
+
4
)
×
4
2
(
1
+
9
)
×
9
2
(
1
+
9
)
×
9
2
(
1
+
n
-
1
)
(
n
-
1
)
2
(
1
+
n
)
×
n
2
(
1
+
n
-
1
)
(
n
-
1
)
2
(
1
+
n
)
×
n
2
【考点】规律型:数字的变化类;规律型:图形的变化类.
【答案】1+2+3+4=;1+2+3+…+9=;10+15=52;+=n2
(
1
+
4
)
×
4
2
(
1
+
9
)
×
9
2
(
1
+
n
-
1
)
(
n
-
1
)
2
(
1
+
n
)
×
n
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:191引用:1难度:0.3
相似题
-
1.先观察表格,再解决问题.
项数 第一项 前两项 前三项 前四项 前五项 式子① 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 式子② 12 12+22 12+22+32 12+22+32+42 12+22+32+42+52 两个式子的比 1 353713311
(2)计算12+22+32+42+…+402的值;
(3)计算22+42+62+82+…+402的值.发布:2025/6/17 19:30:1组卷:188引用:2难度:0.1 -
2.观察下列各式:
;13+23=9=14×4×9=14×22×32;13+23+33=36=14×9×16=14×32×42;13+23+33+43=100=14×16×25=14×42×52
…
若n为正整数,试猜想13+23+33+…+n3等于.发布:2025/6/17 9:30:1组卷:176引用:2难度:0.6 -
3.已知A、B两点相距54米,小乌龟从A点出发前往B点,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米,…,按此规律行进,如果A点在数轴上表示的数为-17,数轴上每个单位长度表示1米(从A点向B点方向行进记为前进)
(1)求出B点在数轴上表示的数;
(2)若B点在原点的右侧,经过第五次行进后小乌龟到达M点,第六次行进后到达N点,M点到A点的距离与N点到A点的距离相等吗?说明理由;
(3)若B点在原点的左侧,那么经过10次行进后,小乌龟到达的点与B点之间的距离是多少?发布:2025/6/17 16:30:1组卷:82引用:3难度:0.5