如图所示的某种容器的体积为18πdm3,它是由半球和圆柱两部分连接而成,半球的半径与圆柱的底面半径都为rdm,圆柱的高为hdm.已知顶部半球面的造价为3a元/dm2,圆柱的侧面造价为a元/dm2,圆柱底面的造价为2a3元/dm2.
(1)将圆柱的高h表示为底面半径r的函数,并求出定义域;
(2)当容器造价最低时,圆柱的底面半径r为多少?
2
a
3
【考点】棱柱、棱锥、棱台的体积.
【答案】(1)h=,0<r<3;
(2)当容器造价最低时,圆柱的底面半径r=.
18
-
2
3
r
3
r
2
(2)当容器造价最低时,圆柱的底面半径r=
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:74引用:2难度:0.5
相似题
-
1.如图所示,AB为圆O的直径,PC⊥平面ABC,Q在线段PA上.
(1)求证:平面BCQ⊥平面ACQ;
(2)若Q为靠近P的一个三等分点,PC=BC=1,,求VP-BCQ的值.AC=22发布:2025/1/20 8:0:1组卷:37引用:3难度:0.6 -
2.如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.32
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.发布:2025/1/20 8:0:1组卷:95引用:3难度:0.1 -
3.如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD的边BC垂直于圆O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)设CD的中点为M,求证:EM∥平面DAF;
(Ⅱ)求三棱锥B-CME的体积.发布:2025/1/20 8:0:1组卷:16引用:1难度:0.5