【课本再现】把两个全等的矩形ABCD和矩形CEFG拼成如图1的图案,则∠ACF=9090°;
【迁移应用】如图2,在正方形ABCD中,E是CD边上一点(不与点C,D重合),连接BE,将BE绕点E顺时针旋转90°至FE,作射线FD交BC的延长线于点G,求证:CG=BC;
【拓展延伸】在菱形ABCD中,∠A=120°,E是CD边上一点(不与点C,D重合),连接BE,将BE绕点E顺时针旋转120°至FE,作射线FD交BC的延长线于点G.
①线段CG与BC的数量关系是 CG=12BCCG=12BC;
②若AB=6,E是CD的三等分点,则△CEG的面积为 332或33332或33.

1
2
1
2
3
3
2
3
3
3
2
3
【考点】四边形综合题.
【答案】90;CG=BC;或3
1
2
3
3
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/2 8:0:9组卷:1240引用:11难度:0.3
相似题
-
1.如图1,在Rt△ABC中,∠ACB=90°,∠CAB=30°,点D在边AB上以CD为底边作等腰直角△CDP(点P,A在直线CD的两侧),射线CP交直线AB于点E.
(1)若点D是AB的中点,且BC=2,求DP的长;
(2)当△CDE是等腰三角形时,求∠BCE的度数;
(3)如图2,设AP=a,求四边形ADPC面积的最小值.(用含a的式子表示)发布:2025/6/17 4:30:1组卷:26引用:1难度:0.4 -
2.如图,在菱形ABCD中,对角线AC,BD交于点O.
(1)若AB=5,AC=8,则菱形ABCD的面积是 ;
(2)点F在BC上,AF交BD于点E,若BE=BF,求证:CF=2OE;
(3)点P在射线AC上,且∠PDO=,若AC=16,AD=10,则DP的长为 .12∠PCD发布:2025/6/17 4:30:1组卷:164引用:2难度:0.1 -
3.将纸片△ABC沿DE折叠使点A落在点A'处.
【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是 ;
【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间的数量关系是 ;
【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为 .发布:2025/6/17 4:30:1组卷:309引用:4难度:0.4