试卷征集
加入会员
操作视频

如图1,现有3种不同型号的A型、B型、C型卡片若干张.
(1)已知1张A型卡片,1张B型卡片,2张C型卡片可拼成如图2所示的正方形,用不同的方法计算图2中阴影部分的面积,可得到等式:
a2+b2=(a+b)2-2ab
a2+b2=(a+b)2-2ab

(2)请用上述三种型号的卡片若干张拼出一个面积为2a2+5ab+2b2的长方形(无空隙,不重叠),在图4虚线框内画出你的拼接示意图,并根据拼图直接写出多项式2a2+5ab+2b2因式分解的结果;
(3)取出一张A型卡片,一张B型卡片,放入边长为m(a<m<a+b)的正方形大卡片内,如图3所示,图中A,B型卡片重叠部分面积记为S1,边长为m的正方形未被覆盖部分面积记为S2,S3,若S1=S2+S3,a+b=5,ab=3,求出大正方形的面积(即m2的值).

【答案】a2+b2=(a+b)2-2ab
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:778引用:4难度:0.5
相似题
  • 1.阅读下列题目的解题过程:
    已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:

    (2)错误的原因为:

    (3)本题正确的结论为:

    发布:2024/12/23 18:0:1组卷:2620引用:25难度:0.6
  • 2.若a是整数,则a2+a一定能被下列哪个数整除(  )

    发布:2024/12/24 6:30:3组卷:416引用:7难度:0.6
  • 3.阅读理解:
    能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法验证67822615是7的倍数(写明验证过程);
    (2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.

    发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正