试卷征集
加入会员
操作视频

【问题发现】
(1)如图1,老师将正方形ABCD和正方形AEFG按如图所示的位置摆放,连接BE和DG,延长DG交BE的延长线于点H,求BE与DG的数量关系和位置关系;

【类比探究】
(2)若将“正方形ABCD和正方形AEFG改成“矩形ABCD和矩形AEFG,且矩形ABCD∽矩形AEFG,AE=3,AG=4,如图,点E、D、G三点共线,点G在线段DE上时,若
AD
=
12
10
5
,求BE的长.

【拓展延伸】
(3)若将“正方形ABCD和正方形AEFG改成“菱形ABCD和菱形AEFG,且菱形ABCD∽菱形AEFG如图
3,AD=5,AC=6,AG平分∠DAC,点P在射线AG上,在射线AF上截取AQ,使得
AQ
=
3
5
AP
,连接PQ,QC,当
tan
PQC
=
4
3
时,直接写出AP的长.

【考点】相似形综合题
【答案】(1)BE=DG,BE⊥DG;
(2)3;
(3)AP=
4
5
3
20
5
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/17 8:0:9组卷:563引用:1难度:0.1
相似题
  • 1.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D为BC边上的一点,连接AD,过点C作CE⊥AD于点F,交AB于点E,连接DE.
    (1)若AE=2BE,求证:AF=2CF;
    (2)如图②,若AB=
    2
    ,DE⊥BC,求
    BE
    AE
    的值.

    发布:2025/5/24 7:30:1组卷:247引用:4难度:0.2
  • 2.(1)如图①,在正方形ABCD中,E,F分别是AB,BC边上的动点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM,可以证明△DEF≌△DMF,进一步推出EF,AE,FC之间的数量关系为

    (2)在图①中,连接AC分别交DE和DF于P,Q两点,求证:△DPQ∽△DFE;
    (3)如图②,在菱形ABCD中,∠ABC=60°,点E,F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°,连接BD分别与边AE,AF交于M,N.当∠DAF=15°时,猜想MN,DN,BM之间存在什么样的数量关系,并证明你的结论.

    发布:2025/5/24 8:0:1组卷:711引用:2难度:0.1
  • 3.在△ABC中,AB=AC,P是BC边上一点,PD∥AB,交AC于点D.
    (1)如图1,连接PA,若∠APD=∠B.
    ①求证:AB2=PA•BC;
    ②过点D作DF⊥PA于F,求
    PF
    PC
    的值;
    (2)如图2,过P作PG∥AC,交AB于点G,点Q为△ABC外一点,且P,Q关于直线DG对称,连接QA,QC,求证:∠B+∠Q=180°.

    发布:2025/5/24 7:0:1组卷:93引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正