对于数列{an},定义an*=1,an+1≥an -1,an+1<an
,设{an*}的前n项和为Sn*.
(Ⅰ)设an=n2n,写出a1*,a2*,a3*,a4*;
(Ⅱ)证明:“对任意n∈N*,有Sn*=an+1-a1”的充要条件是“对任意n∈N*,有|an+1-an|=1”;
(Ⅲ)已知首项为0,项数为m+1(m≥2)的数列{an}满足:
①对任意1≤n≤m且n∈N*,有an+1-an∈{-1,0,1};
②Sm*=am.
求所有满足条件的数列{an}的个数.
1 , a n + 1 ≥ a n |
- 1 , a n + 1 < a n |
n
2
n
【考点】数列的求和.
【答案】(Ⅰ),,,;(Ⅱ)证明见解析;(Ⅲ)(m-1)•2m-2.
a
*
1
=
1
a
*
2
=
-
1
a
*
3
=
-
1
a
*
4
=
-
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:255引用:12难度:0.3
相似题
-
1.定义
为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”np1+p2+…+pn,又bn=13n+1,则an+26+1b1b2+…+1b2b3=( )1b9b10发布:2024/12/29 11:30:2组卷:119引用:1难度:0.7 -
2.十九世纪下半叶集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段(
,13),记为第一次操作;再将剩下的两个区[0,23],[13,1]分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于23,则需要操作的次数n的最小值为( )(参考数据:lg2=0.3010,lg3=0.4771)910发布:2024/12/29 13:30:1组卷:143引用:17难度:0.6 -
3.设数列{an}的前n项和是Sn,令
,称Tn为数列a1,a2,…,an的“超越数”,已知数列a1,a2,…,a504的“超越数”为2020,则数列5,a1,a2,…,a504的“超越数”为( )Tn=S1+S2+⋯+Snn发布:2024/12/29 9:0:1组卷:127引用:3难度:0.5