如图,抛物线y=-14x2+bx+c与x轴交于A(-2,0)、B(8,0)两点,与y轴交于点C.点P是第一象限内抛物线上的一个动点,过点P作直线PD⊥x轴于点D,交直线BC于点E.
(1)求抛物线的解析式;
(2)求线段PE的最大值;
(3)当CP=CE时,求点P的坐标.
y
=
-
1
4
x
2
+
bx
+
c
【考点】二次函数综合题.
【答案】(1);
(2)PE最大值为4;
(3)(4,6).
y
=
-
1
4
x
2
+
3
2
x
+
4
(2)PE最大值为4;
(3)(4,6).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:602引用:2难度:0.3
相似题
-
1.在平面直角坐标系xOy中,抛物线
与x轴交于O,A两点,过点A的直线y=-34x2+3x与y轴交于点C,交抛物线于点D.y=-34x+3
(1)直接写出点A,C,D的坐标;
(2)如图1,点B是直线AC上方第一象限内抛物线上的动点,连接AB和BD,求△ABD面积的最大值;
(3)如图2,若点M在抛物线上,点N在x轴上,当以A,D,M,N为顶点的四边形是平行四边形时,求点N的坐标.发布:2025/6/8 20:30:2组卷:429引用:6难度:0.5 -
2.如图:已知点A(1,2),抛物线L:y=2(x-t)(x+t-4)(t为常数)的顶点为P,且与y轴交于点C.
(1)若抛物线L经过点A,求L的解析式,并直接写出此时的顶点坐标和对称轴.
(2)设点P的纵坐标为yp,求yp与t的关系式,当yp取最大值时抛物线L上有两点(x1,y1)、(x2,y2)当x1>x2>3时.y1y2(填“>、=、<”)
(3)设点C的纵坐标为yc,当yc取得最大值时:
①求P、C两点间的距离.
②关于x的一元二次方程2(x-t)(x+t-4)=8的解为 .(直接写出答案)发布:2025/6/9 0:0:2组卷:22引用:1难度:0.4 -
3.在平面直角坐标系中,设二次函数y=-(x-m)2+1-2m(m是实数).
(1)当m=-1时,若点A(2,n)在该函数图象上,求n的值.
(2)已知A(2,-2),B(1,2),C(1,-1),从中选择一个点作为该二次函数图象的顶点,判断此时(2,-2)是否在该二次函数的图象上,
(3)已知点P(1-a,p),Q(2m+1-a,p)都在该二次函数图象上,求证:p≤2.发布:2025/6/8 23:30:1组卷:930引用:3难度:0.4