如图①,已知线段AB与直线l,过A、B两点,作⊙O使其与直线l相切,切点为P,易证∠APB=∠AHB>∠AQB,可知点P对线段AB的视角最大.
问题提出
(1)如图②,已知△ABP的外接圆为⊙O,PQ与⊙O相切于点P,交AB的延长线于点Q.
①请判断∠BPQ与∠A的大小关系,并说明理由.
②若QB=2,AB=6,求PQ的长.
问题解决
(2)如图③,一大型游乐场入口AB设在道路DN边上,在“雪亮工程”中,为了加强安全管理,结合现实情况,相关部门准备在与地面道路DN夹角为60°的射线DM方向上(位于垂直于地面的平面内)确定一个位置C,并架设斜杆AC,在斜杆AC的中点P处安装一摄像头,对入口AB实施监控(其中点A、B、D、P、C、M、N在同一平面内),已知DA=40米,AB=25米,调研发现,当∠APB最大时监控效果最好,请问在射线DM上是否存在一点C,使得∠APB达到最大?若存在,请确定点C在DM上的位置及斜杆AC的长度;若不存在,请说明理由.

【考点】圆的综合题.
【答案】(1)①∠BPQ=∠A,理由见解答过程.②4.
(2)点C在DM上距离点D60m处,斜杆AC的长度为m.
(2)点C在DM上距离点D60m处,斜杆AC的长度为
20
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 19:30:1组卷:1205引用:2难度:0.3
相似题
-
1.如图1,以点O为圆心,半径为4的圆交x轴于A,B两点,交y轴于C,D两点,点P为劣弧AC上的一动点,延长CP交x轴于点E;连接PB,交OC于点F.
(1)若点F为OC的中点,求PB的长;
(2)求CP•CE的值;
(3)如图2,过点O作OH∥AP交PD于点H,当点P在弧AC上运动时,连接AC,PC.试问△APC与△OHD相似吗?说明理由;的值是否保持不变?若不变,试证明,求出它的值;若发生变化,请说明理由.APDH发布:2025/6/24 18:30:1组卷:272引用:1难度:0.5 -
2.如图,已知⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标是(1,-1),半径为
.5
(1)比较线段AB与CD的大小;
(2)求A、B、C、D四点的坐标;
(3)过点D作⊙O′的切线,试求这条切线的解析式.发布:2025/6/24 20:0:2组卷:43引用:1难度:0.5 -
3.下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.画法:
(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.则直线AD就是过点A的圆的切线.
请回答:①这种画法是否正确 (是或否);
②你判断的依据是:.发布:2025/6/25 8:0:1组卷:19引用:1难度:0.4