试卷征集
加入会员
操作视频

如图①,已知线段AB与直线l,过A、B两点,作⊙O使其与直线l相切,切点为P,易证∠APB=∠AHB>∠AQB,可知点P对线段AB的视角最大.
问题提出
(1)如图②,已知△ABP的外接圆为⊙O,PQ与⊙O相切于点P,交AB的延长线于点Q.
①请判断∠BPQ与∠A的大小关系,并说明理由.
②若QB=2,AB=6,求PQ的长.
问题解决
(2)如图③,一大型游乐场入口AB设在道路DN边上,在“雪亮工程”中,为了加强安全管理,结合现实情况,相关部门准备在与地面道路DN夹角为60°的射线DM方向上(位于垂直于地面的平面内)确定一个位置C,并架设斜杆AC,在斜杆AC的中点P处安装一摄像头,对入口AB实施监控(其中点A、B、D、P、C、M、N在同一平面内),已知DA=40米,AB=25米,调研发现,当∠APB最大时监控效果最好,请问在射线DM上是否存在一点C,使得∠APB达到最大?若存在,请确定点C在DM上的位置及斜杆AC的长度;若不存在,请说明理由.

【考点】圆的综合题
【答案】(1)①∠BPQ=∠A,理由见解答过程.②4.
(2)点C在DM上距离点D60m处,斜杆AC的长度为
20
7
m.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1170引用:2难度:0.3
相似题
  • 1.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
    (1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
    (2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.

    发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3
  • 2.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
    (1)求证:直线CE是圆O的切线.
    (2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
    (3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.

    发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1
  • 3.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
    (1)求证:BE是圆O的切线;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
    (3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.

    发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正