定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:

(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?
(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE,求BE的长.
【答案】(1)见解析;
(2)4.
(2)4.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:196引用:3难度:0.6
相似题
-
1.在△ABC中,∠ACB=90°,BC=1,AC=3,将△ABC以点C为中心顺时针旋转90°,得到△DEC,连接BE、AD.下列说法错误的是( )
发布:2025/6/16 20:0:1组卷:275引用:4难度:0.6 -
2.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
发布:2025/6/16 20:0:1组卷:3318引用:7难度:0.3 -
3.如图,Rt△ABC中,∠C=90°,∠CAB=37°,AB=5,AC=4,BC=3,直线MN经过点C,交边AB于点D,分别过点A,B作AF⊥MN,BE⊥MN,垂足分别为点E,F,设线段BE,AF的长度分别为d1,d2.
(1)求△ABC的面积;
(2)若直线MN从与CB重合位置开始顺时针绕着点C旋转,至与CA重合时停止,在旋转过程中,试求出d1+d2的最大值,并求出此时直线MN旋转角的度数(即∠BCD的度数).发布:2025/6/16 19:30:1组卷:337引用:3难度:0.3