阅读并解答下列问题;在学习完《中心对称图形》一章后,老师给出了以下一个思考题:如图1,在平面直角坐标系xOy中,已知点A(0,3),B(5,1),C(a,0),D(a+2,0),连接AC,CD,DB,求AC+CD+DB最小值.

【思考交流】小明:如图2,先将点A向右平移2个单位长度到点A1,作点B关于x轴的对称点B1,连接A1B1交x轴于点D,将点D向左平移2个单位长度得到点C,连接AC.BD.此时AC+CD+DB的最小值等于A1B1+CD.
小颖:如图3,先将点A向右平移2个单位长度到点A1,作点A1关于x轴的对称点A2,连接A2B可以求解.
小亮:对称和平移还可以有不同的组合….
【尝试解决】在图2中,AC+CD+DB的最小值是77.
【灵活应用】如图4,在平面直角坐标系xOy中,已知点A(0,3),B(5,1),C(a,1),D(a+2,0),连接AC,CD,DB,则AC+CD+DB的最小值是32+532+5,此时a=22,并请在图5中用直尺和圆规作出AC+CD+DB最小时CD的位置(不写作法,保留作图痕迹).
【拓展提升】如图6,在平面直角坐标系xOy中,已知点A(0,3),C是一次函数y=x图象上一点,CD与y轴垂直且CD=2(点D在点C右侧),连接AC,CD,AD,直接写出AC+CD+DA的最小值是34+234+2,此时点C的坐标是(98,98)(98,98).
3
2
+
5
3
2
+
5
34
+
2
34
+
2
9
8
,
9
8
9
8
,
9
8
【考点】一次函数综合题.
【答案】7;;2;;()
3
2
+
5
34
+
2
9
8
,
9
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1722引用:2难度:0.1
相似题
-
1.某工厂有14m长的旧墙一面,现在准备利用这面旧墙,建造平面图形为矩形,面积为126m2的厂房,工程条件为:①建1m新墙的费用为a元;②修1m旧墙的费用为
元;③拆去1m旧墙,用所得材料建造1m新墙的费用为a4元.经过讨论有两种方案:(Ⅰ)利用旧墙的一段xm(x<14)为矩形厂房一面的边长;(Ⅱ)矩形厂房利用旧墙的一面边长为x(x≥14).问:如何利用旧墙,即x为多少米时,建墙费用最省?(Ⅰ)(Ⅱ)两种方案哪个更好?a2发布:2025/5/28 13:30:2组卷:39引用:1难度:0.9 -
2.如图,直线
,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为( ,).y=3x发布:2025/5/28 12:0:6组卷:710引用:23难度:0.5 -
3.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.发布:2025/5/28 12:30:1组卷:1336引用:28难度:0.3