已知函数f(x)=a•exx-x+lnx.
(1)若a=1,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若存在实数k(k>0),使得对任意x1∈[k,+∞),总存在x2∈[k,+∞),满足f(x1)<f(x2),求实数a的取值范围.
f
(
x
)
=
a
•
e
x
x
-
x
+
lnx
【答案】(1)y=e-1.
(2)(0,+∞).
(2)(0,+∞).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:61引用:1难度:0.6
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:296引用:2难度:0.4 -
2.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1 -
3.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5