【发现问题】小强在一次学习过程中遇到了下面的问题:如图①,AD是△ABC的中线,若AB=5,AC=3,求AD的取值范围.

【探究方法】小强所在的小组通过探究发现,延长AD至点E.使ED=AD.连接BE.
可以证出△ADC≌△EDB,利用全等三角形的性质可将已知的边长与AD转化到△ABE中,进而求出AD的取值范围.
方法小结:从上面的思路可以看出,解决问题的关键是将中线AD延长一倍,构造出全等三角形,我们把这种方法叫做“倍长中线法”.
(1)请你利用上面解答问题的思路方法,写出求AD的取值范围的过程;
【问题解决】
(2)如图②,CB是△AEC的中线,CD是△ABC的中线,且AB=AC,下列四个选项中:
A.∠ACD=∠BCD
B.CE=2CD
C.∠BCD=∠BCE
D.CD=CB
直接写出所有正确选项的序号是 BCBC.
【问题拓展】
(3)如图③,在△ABO和△CDO中,OA=OB,OC=OD,∠AOB与∠COD互补,连接AC、BD,E是BD的中点,求证:OE=12AC.
1
2
【考点】三角形综合题.
【答案】BC
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/7 8:0:9组卷:488引用:2难度:0.3
相似题
-
1.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
(1)直接写出c及x的取值范围;
(2)若x是大于14的偶数.
①求c的长;
②判断△ABC的形状.发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4 -
2.在△ABC中,∠ACB=2∠B.
(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证:CD=DE=;AC+CD=;(请直接写出结论,不用证明.)
(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,模仿题(1)的思路,求证:AB=AC+CD;
(3)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.发布:2025/6/16 18:30:2组卷:191引用:1难度:0.4 -
3.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
【思考】如果点P,Q分别从点A,B同时出发,经过几秒,△PBQ的面积等于8cm2?
【探究】如果点P,Q分别从点A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能,说明理由.
【拓展】若点P沿射线AB方向从点A出发,以1cm/s的速度移动,点Q沿射线CB方向从点C出发,以2cm/s的速度移动,点P,Q同时出发,则经过几秒,△PBQ的面积为1cm2?发布:2025/6/16 21:0:1组卷:233引用:1难度:0.3