(感知)如图1所示,△ABC是等边三角形,D是边BC上一点(点D不与点B,C重合),作∠EDF=60°,使角的两边分别交边AB,AC于点E,F,且BD=CF.若DE⊥BC,则∠DFC的大小是 90°90°.
(探究)如图2所示,△ABC是等边三角形,D是边BC上一点(点D不与点B,C重合),作∠EDF=60°,使角的两边分别交边AB,AC于点E,F,且BD=CF.求证:BE=CD.
(应用)如图3所示,△ABC是等边三角形,若D是边BC的中点,且AB=2,∠EDF=60°,且BD=CF.求四边形AEDF的周长.

【考点】全等三角形的判定与性质;等边三角形的性质.
【答案】90°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:296引用:3难度:0.6
相似题
-
1.如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.
(1)求证:AC=BD;
(2)若∠ABC=35°,求∠CAO的度数.发布:2025/6/20 20:0:1组卷:548引用:10难度:0.7 -
2.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.发布:2025/6/20 18:0:1组卷:16880引用:67难度:0.7 -
3.如图1,在△A1B1C1和△A2B2C2中,A1B1=A2B2,∠A1=∠A2,∠B1=2∠B2,我们把△A1B1C1和△A2B2C2称为“等边倍角”三角形,其中A1B1和A2B2为对应等边.
△ABC中,D,E分别是BC,AC边上的点(不与端点重合),AD与BE相交于点F.
(1)如图2,若AB=AC≠BC.
①当AD⊥BC时,图中能与△ABC构成“等边倍角”三角形的是;(直接写出,不必证明)
②当AD与BC不垂直时,若△ABE与△ADC是“等边倍角”三角形,其中AB和AC为对应等边,求∠AFE的度数.
(2)如图3,连接DE,若DE平分∠BEC,BE=2AE,点F是AD的中点,求证:△ABF和△ADE是“等边倍角”三角形.发布:2025/6/20 16:30:1组卷:1687引用:5难度:0.4