如图1,在建筑工人临时宿舍外,有两根相距10米的立柱AB,CD垂直于水平地面上,AB=CD,在AB,CD间拉起一根晾衣绳,由于绳子本身的重力,使绳子无法绷直,其形状可近似看成抛物线y=120x2+bx+c,已知绳子最低点距离地面74米.以点B为坐标原点,直线BD为x轴,直线AB为y轴建立平面直角坐标系.
(1)求立柱AB的长度;
(2)一段时间后,绳子被抻长,下垂更多,为了防止衣服碰到地面,在线段BD之间与AB相距4米的地方加上一根立柱MN撑起绳子,这时立柱左侧的抛物线F1的最低点相对点A下降了1米,距立柱MN也是1米,如图2所示,求MN的长;
(3)若加在线段BD之间的立柱MN的长度是2.4米,并通过调整MN的位置,使抛物线F1的开口大小与抛物线y=112x2+1的开口大小相同,顶点距离地面1.92米.求MN与CD的最近距离.

1
20
7
4
y
=
1
12
x
2
+
1
【考点】二次函数的应用.
【答案】(1)AB=3米;
(2)MN=米;
(3)MN与CD的最近距离为4米.
(2)MN=
19
9
(3)MN与CD的最近距离为4米.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:391引用:1难度:0.5
相似题
-
1.有一种产品的质量分成6种不同档次,若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.
(1)若最低档次的产品每件利润17元时,生产哪一种档次的产品的利润最大?并求最大利润.
(2)由于市场价格浮动,生产最低档次的产品每件利润可以从8元到24元不等,那么生产哪种档次的产品所得利润最大?发布:2025/5/27 19:30:1组卷:128引用:3难度:0.1 -
2.甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(米)与其距地面高度h(米)之间的关系式为h=-
s2+112s+23.如图,已知球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为32米,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是 .94发布:2025/5/28 1:30:2组卷:599引用:19难度:0.7 -
3.春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭到霜冻灾害,需采取预防措施.下图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随着时间变化情况,其中0时~5时的图象满足一次函数关系,5时~8时的图象满足二次函数y=-x2+mx+n关系.请你根据图中信息,解答下列问题:
(1)求次日5时的气温;
(2)求二次函数y=-x2+mx+n的解析式;
(3)针对这种植物判断次日是否需要采取防霜措施,并说明理由.(参考数据:≈2.45)6发布:2025/5/28 1:0:2组卷:156引用:12难度:0.1
相关试卷