(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.

【考点】全等三角形的判定与性质.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/11 8:0:9组卷:13537引用:41难度:0.3
相似题
-
1.在△ABC中,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,ED=BD.
(1)求证:△ABD≌△CED;
(2)若∠ACE=22°,则∠B的度数为 .发布:2025/6/15 23:30:1组卷:561引用:8难度:0.5 -
2.如图,∠B=∠D=90°,AB=AD,∠2=64°,则∠1=°.
发布:2025/6/15 23:30:1组卷:260引用:3难度:0.8 -
3.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.发布:2025/6/15 23:0:1组卷:18634引用:9难度:0.3