如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依此操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 等边三角形等边三角形,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 正方形正方形,此时AE与BF的数量关系是 AE=BFAE=BF;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.

【考点】几何变换综合题.
【答案】等边三角形;正方形;AE=BF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1591引用:27难度:0.5
相似题
-
1.如图①,在Rt△ABC中,∠B=90°,AB=5,BC=12,CD=5,DE∥AB.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)①当α=0°时,=;②当α=180°时,AEBD=.AEBD
(2)试判断:当0≤α≤360°时,的大小有无变化?请仅就图②的情形给出证明.AEBD
(3)当△EDC旋转到A,D,E三点共线时,直接写出线段BD的长.发布:2025/5/23 20:0:1组卷:194引用:3难度:0.3 -
2.如图,在平面直角坐标系中有Rt△ABO,∠BAO=90°,∠ABO=30°,B(-8,0).将三角形ABO绕着点O顺时针方向旋转,旋转后点A与A1,点B与B1相重合.
(1)当旋转角为60°时,求点B1的坐标;
(2)当点B1落在BA的延长线上时,求点B1的坐标.
(3)若点E为AB的中点,求EB1的最大值和最小值.(直接写出结果即可)发布:2025/5/23 18:0:1组卷:688引用:5难度:0.1 -
3.如图,在矩形ABCD中,AD=26,AB=48,点E是边AB上的一个动点,将△CBE沿CE折叠,得到△CB'E连接AB',DB',若△ADB'为等腰三角形,则BE的长为 .
发布:2025/5/23 11:0:1组卷:366引用:2难度:0.3