已知椭圆G:x22+y2=1,与x轴不重合的直线l过椭圆的左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点,设直线的斜率为kl,直线OM的斜率为kOM.
(1)求证:kl•kOM=-12;
(2)若存在直线l满足|AM|2=|CM||DM|,求直线l的方程.
G
:
x
2
2
+
y
2
=
1
k
l
•
k
OM
=
-
1
2
【考点】椭圆的中点弦.
【答案】(1)证明详情见解答.
(2)x-y+1=0或x+y+1=0.
(2)x-
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:15引用:1难度:0.6
相似题
-
1.已知椭圆C:
内一点x24+y22=1,直线l与椭圆C交于A,B两点,且M是线段AB的中点,则下列结论正确的是( )M(1,12)发布:2024/11/24 8:0:2组卷:69引用:2难度:0.4 -
2.设椭圆
的右焦点为F(c,0),点A(3c,0)在椭圆外,P,Q在椭圆上,且P是线段AQ的中点.若直线PQ,PF的斜率之积为Γ:x2a2+y2b2=1(a>b>0),则椭圆的离心率为( )-12发布:2024/12/15 11:0:1组卷:350引用:2难度:0.6 -
3.已知椭圆C:
的左焦点为F,过F作一条倾斜角为60°的直线与椭圆C交于A,B两点,M为线段AB的中点,若3|FM|=|OF|(O为坐标原点),则椭圆C的离心率为( )x2a2+y2b2=1(a>b>0)发布:2024/11/21 9:0:4组卷:510引用:3难度:0.5