下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:
已知:△ABC.
求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.
作法:如图,
作∠BAC的平分线,交BC于点D.
则点D即为所求.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:作DE⊥AB于点E,作DF⊥AC于点F,
∵AD平分∠BAC,
∴DEDE=DFDF(角平分线的性质角平分线的性质)(括号里填推理的依据).
【答案】DE;DF;角平分线的性质
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 17:0:1组卷:150引用:7难度:0.7
相似题
-
1.如图所示,等腰△ABC,BA=BC,AD⊥BC.
(1)过点B作∠ABD的平分线交AD于点E(要求:保留作图痕迹,不写作法);
(2)在(1)的条件下,已知AD=BD,求证:BE=AC.发布:2025/6/9 18:30:1组卷:331引用:8难度:0.7 -
2.如图,在△ABC中,AB=AC.
(1)利用尺规作图作边BC的高AD,垂足为D(保留作图痕迹,不写作法);
(2)求证:BD=CD.
(3)如果三角形的周长是22,一边长为5,求它的另外两边长.发布:2025/6/9 22:0:2组卷:40引用:2难度:0.4 -
3.下面是小明设计的“作三角形的高线”的尺规作图过程.
已知:△ABC.
求作:BC边上的高线.
作法:如图,
①以点C为圆心,CA为半径画弧;
②以点B为圆心,BA为半径画弧,两弧相交于点D;
③连接AD,交BC的延长线于点E.
所以线段AE就是所求作的BC边上的高线.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面证明.
证明:∵CA=CD,
∴点C在线段AD的垂直平分线上(填推理的依据).
∵=,
∴点B在线段AD的垂直平分线上.
∴BC是线段AD的垂直平分线.
∴AD⊥BC.
∴AE就是BC边上的高线.发布:2025/6/9 22:0:2组卷:121引用:4难度:0.8