问题探究
(1)如图①,⊙O的半径为10,弦AB=16,则圆心O到AB的距离为66;
(2)如图②,线段BC和动点A构成△ABC,已知BC=9,∠BAC=60°,过点A作BC边上的高线AD.若点D在线段BC上,求线段AD长度的最小值;
问题解决
(3)周老师为了增加数学学习的趣味性,设计了一个“寻宝”游戏:如图③,在平面内,线段AB长为9cm,线段AB外有一动点P,且线段PA长为7cm,又有一点Q满足PB=BQ,且∠PBQ=90°,当线段AQ的长度最大时,点Q的位置即为藏宝地.请你确定藏宝地的位置及此时藏宝地到点A的距离.

【考点】圆的综合题.
【答案】6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/23 20:19:40组卷:110引用:1难度:0.3
相似题
-
1.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3 -
2.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
3.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1