已知函数f(x)=x2+mx-m,g(x)=f(x)x,且函数y=f(x-2)是偶函数.
(1)求g(x)的解析式;
(2)若不等式g(lnx)-nlnx≥0在[1e2,1)上恒成立,求n的取值范围;
(3)若函数y=g(log2(x2+4))+k•2log2(x2+4)-10恰好有三个零点,求k的值及该函数的零点.
g
(
x
)
=
f
(
x
)
x
[
1
e
2
,
1
)
y
=
g
(
log
2
(
x
2
+
4
)
)
+
k
•
2
log
2
(
x
2
+
4
)
-
10
【答案】(1);
(2)n≥-2;
(3)0,-2,2.
g
(
x
)
=
x
-
4
x
+
4
(
x
≠
0
)
(2)n≥-2;
(3)0,-2,2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:87引用:2难度:0.3
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:297引用:2难度:0.4 -
2.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1 -
3.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:47引用:4难度:0.5