试卷征集
加入会员
操作视频

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.小明决定研究一下圆,如图,AB是⊙O的直径,点C是⊙O上的一点,延长AB至点D,连接AC、BC、CD,且∠CAB=∠BCD,过点C作CE⊥AD于点E.
(1)求证:CD是⊙O的切线;
(2)若OB=BD,求证:点E是OB的中点;
(3)在(2)的条件下,若点F是⊙O上一点(不与A、B、C重合),求
EF
DF
的值.

【考点】圆的综合题
【答案】(1)见解析;
(2)见解析;
(3)
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:687引用:7难度:0.1
相似题
  • 1.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.
    (1)求∠ACB的大小(用α,β表示);
    (2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC=2∠BAC;
    (3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α-45°,
    ①求证:GM∥BC,GM=
    1
    2
    BC;
    ②请直接写出
    OM
    MC
    的值.

    发布:2025/6/7 16:0:2组卷:1490引用:8难度:0.1
  • 2.已知,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是优弧CBD上的任意一点,AH=2,CH=4.

    (1)如图1,
    ①求⊙O的半径;
    ②求sin∠CMD的值.
    (2)如图2,直线BM交直线CD于点E,直线MH交⊙O于点N,连结BN交CD于点F,求HE•FH的值.

    发布:2025/6/7 7:0:1组卷:476引用:2难度:0.3
  • 3.如图,四边形OABC中,AO∥BC,∠AOC=90°,AO=3,AB=5.以O为圆心,OA为半径作圆,⊙O经过点C,且与BA的延长线交于F.延长AO交圆于E,连接FC交AE于点D.
    (1)求证:BC是⊙O的切线;
    (2)求cos∠FAE的值;
    (3)求线段OD的长.

    发布:2025/6/7 5:0:1组卷:79引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正