问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=4cm,AC=8cm.
操作发现:
(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是 菱形菱形.
(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC'D,连接CC',取CC'的中点F,连接AF并延长至点G,使FG=AF,连接CG、C'G,得到四边形ACGC',发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连接CC',试求∠ACB的度数及S△C′CH的值.

【考点】四边形综合题.
【答案】菱形
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:121引用:1难度:0.4
相似题
-
1.(1)如图1,在正方形ABCD中.E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.
(2)如图2,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连接DE分别交线段BC,PC于点M,N.
①求∠DMC的度数;
②连接AC交DE于点H,求的值.DHBC发布:2025/5/24 16:30:1组卷:236引用:4难度:0.3 -
2.如图,在正方形ABCD中,点P为对角线AC上一动点(点P不与点A点C重合),过点P作PE⊥AD于点E,点M为CP的中点,分别连接MB、MD、ME.
(1)求证:△AMB≌△AMD;
(2)连接BE,过点M作MN⊥AD于点N,证明:△BME是等腰直角三角形;
(3)将图中△PEA绕点A顺时针旋转45°得到△P′E′A,设点M′为P′C的中点,连接M′E′、M′B、E′B(请在备用图中画出图形),判断此时△BM′E′的形状,并说明理由.发布:2025/5/24 16:30:1组卷:61引用:1难度:0.4 -
3.(1)如图1,四边形ABCD为正方形,BF⊥AE,那么BF与AE相等吗?为什么?
(2)如图2,在Rt△ABC中,BA=BC,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,求AF:FC的值;
(3)如图3,Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,若AB=3,BC=4,求CF.发布:2025/5/24 16:30:1组卷:1793引用:4难度:0.1