在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=45.
(1)求CD的长.
(2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动.
①若当v=2时,CP=BQ,求t的值.
②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值范围.
4
5
【考点】三角形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:741引用:3难度:0.1
相似题
-
1.在△ABC中,BD是AC边上的高,AD=3,CD=2,BD=4,点M在AD上,且AM=2.动点P从点A出发,沿折线AB-BD以每秒1个单位长度的速度运动,连结PM,作点A关于直线PM的对称点A′.设点P的运动时间为t秒(t>0).
(1)用含t的代数式表示线段BP的长;
(2)当点A′在△ABC内部时,求t的取值范围;
(3)连结CP.当CP⊥AB时,求△BCP的面积;
(4)当MA′∥AB时,直接写出t的值.发布:2025/6/9 21:30:1组卷:112引用:2难度:0.1 -
2.已知,点P为等边三角形ABC所在平面内一点,且∠BPC=120°.
(1)如图(1),∠ABP=90°,求证:BP=CP;
(2)如图(2),点P在△ABC内部,且∠APB=90°,求证:BP=2CP;
(3)如图(3),点P在△ABC内部,M为BC上一点,连接PM,若∠BPM+∠APC=180°,求证:BM=CM.发布:2025/6/9 21:30:1组卷:242引用:2难度:0.1 -
3.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.△COD为等边三角形,连接OD、AD.
(1)求证:△BCO≌△ACD;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形?发布:2025/6/9 23:30:1组卷:57引用:2难度:0.4