如图,已知点A(-1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c(a≠0)上.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上有一点P,求△PBC面积的最大值及此时点P的坐标;
(3)在抛物线的对称轴上求一点M,使得BM-CM最大.
【考点】二次函数综合题.
【答案】(1)y=-;
(2)△PBC面积的最大值为,点P坐标为;
(3)BM-CM最大时,点M坐标为(1,2).
1
3
x
2
+
2
3
x
+
1
(2)△PBC面积的最大值为
9
8
(
3
2
,
5
4
)
(3)BM-CM最大时,点M坐标为(1,2).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:326引用:3难度:0.1
相似题
-
1.如图,抛物线y=ax2+
经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.94
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.发布:2025/6/16 19:30:1组卷:730引用:9难度:0.4 -
2.如图,直线y1=-x+3与x轴于交于点B,与y轴交于点C.抛物线y2=-x2+bx+c经过B、C两点,并与x轴另一个交点为A.
(1)求抛物线y2的解析式;
(2)若点M在抛物线上,且S△MOC=4S△AOC,求点M的坐标;
(3)设点P是线段BC上一动点,过P作PQ⊥x轴,交抛物线于点Q,求线段PQ长度的最大值.发布:2025/6/17 2:0:1组卷:1010引用:3难度:0.3 -
3.如图,已知抛物线y=ax2+bx+c过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在x轴上,点G为该抛物线的顶点,且∠QGA=45°,求点Q的坐标.发布:2025/6/16 23:0:1组卷:401引用:5难度:0.5