读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解:求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3-x2-2x=0,可以通过因式分解把它转化为x(x2-x-2)=0,解方程x=0和x2-x-2=0,可得方程x3-x2-2x=0的解.
(1)问题:方程x3-x2-2x=0的解是x1=0,x2=22,x3=-1-1.
(2)拓展:用“转化”思想求方程4x+5=x的解.
(3)应用:如图,已知矩形草坪ABCD的长AD=6m,宽AB=4m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
4
x
+
5
=
x
【答案】2;-1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:244引用:2难度:0.5