问题发现:
(1)如图1,在△ABC中,AB=BC,∠ABC=90°.D为BC的中点,以CD为直角边,在BC下方作等腰直角△CDE,其中∠CDE=90°.以BD为直角边,在BC上方作等腰直角△BDG,其中∠BDG=90°,AE与BG交于点F.求证:AF=EF.
类比探究:
(2)如图2,若将△CDE绕点C顺时针旋转90°,则(1)中的结论是否仍然成立?请说明理由;
拓展延伸:
(3)如图3,在(2)的条件下,再将等腰直角△CDE沿直线BC向右平移k个单位长度,得到△C′D'E',若AB=a,试求AFFE′的值.(用含k,a的式子表示)

AF
FE
′
【考点】相似形综合题.
【答案】(1)见解析;
(2)成立,理由见解析;
(3).
(2)成立,理由见解析;
(3)
a
k
+
a
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:122引用:1难度:0.4
相似题
-
1.【基础巩固】
(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B,求证:AC2=AD•AB.
【尝试应用】
(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=5,BE=3,求AD的长.
【拓展提高】
(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠BAD=2∠EDF,AE=1,DF=4,求菱形ABCD的边长(直接写出答案).发布:2025/5/25 17:0:1组卷:480引用:4难度:0.3 -
2.问题提出
如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F.线段AF,BF,CF之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;
(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.发布:2025/5/25 17:30:1组卷:5696引用:14难度:0.6 -
3.【证明体验】(1)如图1,△ABC中,D为BC边上任意一点,作DE⊥AC于E,若∠CDE=
∠A,求证:△ABC为等腰三角形;12
【尝试应用】
(2)如图2,四边形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的长;
【拓展延伸】
(3)如图3,△ABC中,点D在AB边上满足CD=BD,∠ACB=90°+∠B,若AC=1012,BC=20,求AD的长.3发布:2025/5/25 20:0:1组卷:497引用:1难度:0.3